Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water
نویسندگان
چکیده
A free-Lagrange numerical method is implemented to simulate the axisymmetric jetting collapse of air bubbles in water. This is performed for both lithotripter shock-induced collapses of initially stable bubbles, and for free-running cases where the bubble initially contains an overpressure. The code is validated using two test problems (shock-induced bubble collapse using a step shock, and shock–water column interaction) and the results are compared to numerical and experimental results. For the free-running cases, simulations are conducted for a bubble of initial radius 0.3mm located near a rigid boundary and near an aluminium layer (planar and notched surfaces). The simulations suggest that the boundary and its distance from the bubble influence the flow dynamics, inducing bubble elongation and jetting. They also indicate stress concentration in the aluminium and the likelihood of aluminium deformation associated with bubble collapse events. For the shock-induced collapse, a lithotripter shock, consisting of 56MPa compressive and −10MPa tensile waves, interacts with a bubble of initial radius 0.04mm located in a free field (case 1) and near a rigid boundary (case 2). The interaction of the shock with the bubble causes it to involute and a liquid jet is formed that achieves a velocity exceeding 1.2 km s−1 for case 1 and 2.6 km s−1 for case 2. The impact of the jet on the downstream wall of the bubble generates a blast wave with peak overpressure exceeding 1GPa and 1.75GPa for cases 1 and 2, respectively. The results show that the simulation technique retains sharply resolved gas/liquid interfaces regardless of the degree of geometric deformation, and reveal details of the dynamics of bubble collapse. The effects of compressibility are included for both liquid and gas phases, whereas stress distributions can be predicted within elastic–plastic solid surfaces (both planar and notched) in proximity to cavitation events. There is a movie with the online version of the paper.
منابع مشابه
Numerical Analysis of Water and Air in Venturi Tube to Produce Micro-Bubbles
Two-phase flow regimes are affected by conduit position, alignment, geometry, flow direction, physical characteristics, and flow rate of each phase as well as the heat flux toward the boundaries. Due to the importance of two-phase flow, numerous regimes have been identified. The first step in studying micro-bubble formation inside a venturi tube is to recognize the type of flow regimes. In this...
متن کاملControlled multibubble surface cavitation.
Heterogeneous bubble nucleation at surfaces has been notorious because of its irreproducibility. Here controlled multibubble surface cavitation is achieved by using a hydrophobic surface patterned with microcavities. The expansion of the nuclei in the microcavities is triggered by a fast lowering of the liquid pressure. The procedure allows us to control and fix the bubble distance within the b...
متن کاملSize limits the formation of liquid jets during bubble bursting
A bubble reaching an air-liquid interface usually bursts and forms a liquid jet. Jetting is relevant to climate and health as it is a source of aerosol droplets from breaking waves. Jetting has been observed for large bubbles with radii of R≫100 μm. However, few studies have been devoted to small bubbles (R<100 μm) despite the entrainment of a large number of such bubbles in sea water. Here we ...
متن کاملMechanical Behavior of Concrete, Made with Micro-Nano Air Bubbles
Nano materials have been widely used in laboratory and industrial scales in order to improve various properties of concrete and concrete mixture. The mainstream practice of the researches in this field is to add metallic nano-particles into the concrete mixture. The present research focuses on adding Micro-Nano Air Bubbles (MNAB) into water before mixing it with aggregate and cement mixtures. I...
متن کاملHeat transfer enhancement due to air bubble injection into a horizontal double pipe heat exchanger
If an air flow is injected into a liquid fluid, many ambulant air bubbles are formed inside the fluid. Air bubbles move inside the liquid fluid because of the buoyancy force, and the mobility of these air bubbles makes sizable commixture and turbulence inside the fluid. This mechanism was employed to enhance the heat transfer rate of a horizontal double pipe heat exchanger in this paper. Howeve...
متن کامل